Counting Integral Points on Universal Torsors

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 3 Fe b 20 09 COUNTING INTEGRAL POINTS ON UNIVERSAL TORSORS

— Manin’s conjecture for the asymptotic behavior of the number of rational points of bounded height on del Pezzo surfaces can be approached through universal torsors. We prove several auxiliary results for the estimation of the number of integral points in certain regions on universal torsors. As an application, we prove Manin’s conjecture for a singular quartic del Pezzo surface.

متن کامل

O ct 2 00 8 COUNTING INTEGRAL POINTS ON UNIVERSAL TORSORS

— Manin’s conjecture for the asymptotic behavior of the number of rational points of bounded height on del Pezzo surfaces can be approached through universal torsors. We prove several auxiliary results for the estimation of the number of integral points in certain regions on universal torsors. As an application, we prove Manin’s conjecture for a singular quartic del Pezzo surface.

متن کامل

Infinite transitivity on universal torsors

Let X be an algebraic variety covered by open charts isomorphic to the affine space and q : X̂ → X be the universal torsor over X . We prove that the automorphism group of the quasiaffine variety X̂ acts on X̂ infinitely transitively. Also we find wide classes of varieties X admitting such a covering.

متن کامل

Universal Counting of Lattice Points in Polytopes

Given a lattice polytope P (with underlying lattice L), the universal counting function UP (L ) = |P ∩ L| is defined on all lattices L containing L. Motivated by questions concerning lattice polytopes and the Ehrhart polynomial, we study the equation UP = UQ. Mathematics Subject Classification: 52B20, 52A27, 11P21 Partially supported by Hungarian Science Foundation Grant T 016391, and by the Fr...

متن کامل

On Counting Integral Points in a Convex Rational Polytope

Given a convex rational polytope b = x ∈ n+ Ax= b , we consider the function b → f b , which counts the nonnegative integral points of b . A closed form expression of its -transform z → z is easily obtained so that f b can be computed as the inverse -transform of . We then provide two variants of an inversion algorithm. As a by-product, one of the algorithms provides the Ehrhart polynomial of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2009

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnp030